

trinityconsultants.com

MCTA Air Conference Modeling 101

Kristine Davies

November 29, 2018 Boston, MA

Presentation Goal

Develop basic understanding of modeling concepts to reduce "black box" of modeling

Discussion Points

- > When is modeling needed?
- > What do some of the acronyms mean?
- > What are the critical inputs to the models?
- > What do you do if you do not "pass" the modeling?

Purpose of Dispersion Modeling

When is Modeling Needed?

When is Modeling Required?

* For projects that do not trigger a Federal review, modeling for criteria pollutants (NAAQS) may be requested by state agency

Dispersion Models

- > For most applications:
 - SCREEN Models
 - AERSCREEN, CALPUFF Screen
 - Models that give worst-case first-cut concentration
 - Refined Models
 - AERMOD
 - CALPUFF
 - Special Case Models
 - CTDM Complex Terrain Dispersion Model
 - SCICHEM Second Order Closure Integrated Puff Model with Chemistry
 - SDM Shoreline Fumigation
 - DEGADIS Dense Gas Model
 - OCD Offshore and Coastal Dispersion Mode

How Do We Choose a Modeling Methodology?

> Federal & State Guidance

- Guideline On Air Quality Models
- New Source Review Workshop Manual
- AERMOD Implementation Guidance
- State Guidance
- Regulatory Specific Guidance (SIP, PSD, toxics, etc.)
- FLAG, VISTAS, MOG
- Support Center for Regulatory Air Models (SCRAM)

What Do Some of The Acronyms Mean?

Modeling Definitions - Ambient Air

> Ambient Air

- > The portion of the atmosphere, external to buildings, to which the general public has access [40 CFR Part 50.1 (e)) (7-A)]
 - In general, ambient air is defined as any location at or beyond the fence line of the facility. The fence line must restrict public access by a continuous physical barrier, such as a fence or a wall. If plant property is accessible to the public or if any residence is located within the restricted area, receptors should be located on-property.
 - Be aware of local agency modeling department's likes and dislikes

Modeling Definitions - General (3 of 6)

Modeling Definitions-Downwash (4 of 6)

In about 80% of all modeling cases, maximum concentrations occur at receptors affected by downwash

Modeling Definitions-Good Engineering Practice Stack Height (GEP) (5 of 6)

- > GEP The stack height at which building downwash no longer occurs
- > GEP = Maximum of 65 meters or Hb + 1.5L
 - Hb = height of building
 - MPW = Maximum projected width of building
 - L is the lesser of Hb and MPW
 Cannot model a stack higher than GEP

Modeling Definitions - Other Parameters

What are the Critical Inputs to the Models?

Critical Inputs - Meteorology (1 of 7)

> Wind speed and direction

Critical Inputs - Meteorology (2 of 7) > Turbulence and stability

Critical Inputs - Meteorology (3 of 7)

> Mixing height

Critical Inputs - Landuse

- > Used to be performed manually
- Now performed using AERSURFACE

Critical Inputs - Elevations

Critical Inputs - Source Characterization (6 of 7)

> Common ✤ Point ✤ Area Volume > Special ✤ Line **Buoyant line** * Open pit

Critical Inputs - Source Examples

Source	Example
Point	- Smoke stacks - Vents
Line	 Haul road emissions - paved or unpaved Emissions vented through a gable of a building
Area	 Haul road emissions - paved or unpaved (MO preference) Emissions from a waste water treatment lagoon Gaseous Landfill Emissions Wind-blown emissions of PM10 from a large pile
Volume	 Haul road emissions - paved or unpaved (KS, NE, IA preference) Emissions from eaves, windows, and doors of a building Conveying system transfer points Wind-blown emissions of PM10 from a large pile Other fugitive emissions

Typical Modeling Procedures

- > Obtain and process representative *meteorological data*
- > Develop or obtain a site plan (sources, structures, boundary)
- > Characterize emission sources (area, volume, point, etc.)
- > Define modeling domain, receptor locations, and obtain/process terrain elevation data
- > Input building data and obtain downwash information
- > Develop model input files and select processing options
- > Run model and analyze results

NAAQS Modeling

> Significance Analysis

- > Determine if new project has a "significant impact"
- > SIL = Significant Impact Level
- > ROI = Radius of Impact
- SIA = Significant Impact Area = ROI + 50 km
- > Regional Source Inventory
- Model New Project + Regional Source Inventory
- > Impact + Background should be < NAAQS</p>

NAAQS Analysis Example

40 CFR Part 51 Appendix W Models

> AERSCREEN

- Fast, conservative "screening model"
- Typically used for small projects
- > AERMOD
 - Short and long range regulatory model
 - Run by applicant
- > CALPUFF
 - For visibility and long-range impacts
 - Run by applicant
 - Usually for Federal projects only

Complexity

Cost

Time

What do you do if you do not "pass" the modeling?

What do you do if you do not "pass"? (1 of 2)

- > Determine if project "causes or contributes" to exceedance
- If exceedance occurs when project is significant, review *inventory sources*
- > Review background NAAQS concentrations
- > If exceedance is from your project
 - Isolate problem sources
 - Review/revise modeling parameters and assumptions

What do you do if you do not "pass"? (2 of 2)

- > Use multi-tiered approach or deposition and plume depletion
- > Batch versus continuous sources
- > Different short term vs. long term emission rates
- > Source changes to reduce impacts

What are the Constraints to Expect Due to Modeling?

Constraints Due to Modeling

- > Permit limits taken for model to "pass"
 - Pollutants with different short and long term standards
 - Reduced number of hours/day or hours/year
 - Further restrictions on production
 - Monitoring (e.g., RTO temp to obtain 98% control)
 - Recordkeeping (e.g., hours of operation)

Constraints Due to Modeling

- > Modeling may be the controlling factor for project
 - Too close to a Class I area
 - Ambient monitors already near NAAQS
 - Nearby sources consuming PSD Increment or NAAQS
 - Time of day operation (e.g. operating from 8 AM to 5 PM)

Importance of Modeling

- > Can be the critical path item in a large or small permitting project timeline
- > May ultimately determine *emission limits* or *controls* beyond BACT required for a new project or facility
- > Members of the *public* may be concerned about modeling results

Summary

- > Dispersion modeling is a well-established and acceptable technique for estimating ambient air impacts
- > Dispersion modeling has been built on sound science from the past and present
- > Review model inputs and assumptions
- > Refinements may be necessary
- Modeling is a critical component of permit analyses, litigation, and agency SIP requirements and planning

Questions?

Thank You !!

